Performa fase vegetatif bawang merah persilangan (Allium fistulosum L. x Allium cepa L. var. aggregatum) dengan aplikasi dark septate endophyte

Penulis

  • Chotimatul Azmi Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency
  • Imas Rita Saadah Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency
  • Joko Pinilih Indonesian Instruments Standardization Testing Center for Vegetables, Ministry of Agriculture
  • Noor Faoji Indonesian Instruments Standardization Testing Center for Vegetables, Ministry of Agriculture
  • Noor Roufiq Ahmadi Indonesian Instruments Standardization Testing Center for Vegetables, Ministry of Agriculture
  • Surono Surono Research Center for Applied Microbiology, Research Organization for Life Sciences and Environment, National Research and Innovation Agency
  • Asih Kartasih Karjadi Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency
  • Prasodjo Soedomo Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency

DOI:

https://doi.org/10.70158/buitenzorg.v1i1.5

Abstrak

Aplikasi dark septate endophyte (DSE) pada bawang merah masih cukup jarang. Penelitian ini menyelidiki aplikasi DSE pada bawang merah persilangan (Allium fistulosum L. x Allium cepa L. var. aggregatum) di dataran tinggi Lembang, Jawa Barat, Indonesia. Empat perlakuan (Dendrothyrium sp. strain CPP 1.1.44, Curvularia sp. strain TKC 22, dan Cladosporium sp. strain KSP.1 dan kontrol) dengan empat ulangan pada bawang merah persilangan diselidiki. Berat segar, jumlah umbi, jumlah batang semu, jumlah daun, tinggi tanaman, diameter batang semu, dan diameter daun diukur pada 5, 7, 9, 11, dan 13 minggu setelah tanam (MST). Semua perlakuan baru dipetik dan ditimbang pada 16 MST. Hasil penelitian menunjukkan bahwa bawang merah persilangan memiliki respons yang berbeda di antara perlakuan. Namun, semua perlakuan menunjukkan respons yang sama untuk waktu pertumbuhan maksimum. Nilai tertinggi untuk jumlah batang semu, jumlah daun, tinggi tanaman, diameter batang semu, dan diameter daun masing-masing dicapai pada 13, 11, 9, 9, dan 9 MST. Semua perlakuan dipanen pada 16 MST, 3–8 minggu lebih lama dari tanaman induk bawang merah (A. cepa L. var. aggregatum). Aplikasi tiga DSE kemungkinan dapat mengurangi jumlah batang semu dari persilangan galur bawang merah dan bawang bombay. Perlakuan DSE KSP.1 menunjukkan peningkatan tinggi tanaman dan jumlah umbi. Sementara itu, perlakuan TKC 22 menunjukkan peningkatan tinggi tanaman, batang semu, diameter daun, dan berat segar.

 

Kata kunci: dark septate endophyte, bawang merah, waktu panen, batang semu

Unduhan

Data unduhan belum tersedia.

Referensi

Atif, M. J., Amin, B., Ghani, M. I., Hayat, S., Ali, M., Zhang, Y., & Cheng, Z. (2019). Influence of different photoperiod and temperature regimes on growth and bulb quality of garlic (Allium sativum L.) cultivars. Agronomy, 9(879), 1–21. https://doi.org/10.3390/agronomy9120879

Azmi, C., & Kirana, R. (2011). Korelasi antara beberapa karakter kuantitatif bawang daun.pdf. Prosiding Seminar Nasional PERHORTI 2011, 527–530.

Azmi, C., Rahayu, A., Saadah, I. R., Wulandari, A. W., Sahat, J. P., Jayanti, H., … Surono. (2022). Use of dark septate endophyte (DSE) for true shallot seed (TSS) germination. Proceedings SEMINAR NASIONAL BIOTEKNOLOGI VII, 196–222.

Barresi, O., Lavado, R. S., & Chiocchio, V. M. (2022). Can dark septate endophytic fungi (DSE) mobilize selectively inorganic soil phosphorus thereby promoting sorghum growth? A preliminary study. Revista Argentina de Microbiologia, 54(3), 220–223. https://doi.org/10.1016/j.ram.2022.02.003

Budylin, M. V., Kan, L. Y., Romanov, V. S., & Khrustaleva, L. I. (2014). GISH study of advanced generation of the interspecific hybrids between Allium cepa L. and Allium fistulosum L. with relative resistance to downy mildew. Russian Journal of Genetics, 50(4), 387–394. https://doi.org/10.1134/S1022795414040036

Cebeci, E., & Hanci, F. (2016). Male sterility applications in Allium. Acta Horticulturae, 1145, 51–55. https://doi.org/10.17660/ActaHortic.2016.1145.8

Chang, T. C., Jang, H. Der, Lin, W. De, & Duan, P. F. (2016). Antioxidant and antimicrobial activities of commercial rice wine extracts of Taiwanese Allium fistulosum. Food Chemistry, 190, 724–729. https://doi.org/10.1016/j.foodchem.2015.06.019

Chuda, A., & Adamus, A. (2009). Aspects of interspecific hybridization within edible Alliaceae. Acta Physiologiae Plantarum, 31(2), 223–227. https://doi.org/10.1007/s11738-008-0236-5

Dalimunthe, C. I., Soekarno, B. P., Munif, A., & Surono, S. (2019). Seleksi dan uji potensi cendawan Dark Septate Endophyte sebagai agensia hayati penyakit jamur akar putih (Rigidoporus microporus) pada tanaman karet. Jurnal Penelitian Karet, 37(1), 11–20. https://doi.org/10.22302/ppk.jpk.v37i1.624

Dalimunthe, C. I., Surono, S., Soekarno, B. P. W., Al-Ani, L. K. T., Munif, A., Sriherwanto, C., & Nurdebyandaru, N. (2023). First report of inhibitory abilities of dark septate endophytic fungi against white root rot disease on Hevea brasiliensis seedlings in nursery conditions. Egyptian Journal of Biological Pest Control, 33(81), 1–12. https://doi.org/10.1186/s41938-023-00725-9

Dewayani, W., Samsuri, R., Septianti, E., & Halil, W. (2019). Kajian jenis pengeringan dan beberapa bahan pengisi terhadap kualitas bubuk bawang merah varietas Pikatan. Jurnal Pengkajian Dan Pengembangan Teknologi Pertanian, 3(22), 251–262.

Fukaya, M., Nakamura, S., Nakagawa, R., Nakashima, S., Yamashita, M., & Matsuda, H. (2017). Rare sulfur-containing compounds, kujounins A1 and A2 and Allium sulfoxide A1, from Allium fistulosum “Kujou.” Organic Letters, 20, 28–31. https://doi.org/10.1021/acs.orglett.7b03234

He, C., Wang, W., & Hou, J. (2019). Characterization of dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Frontiers in Microbiology, 10(JUN), 1–14. https://doi.org/10.3389/fmicb.2019.01364

Hirayama, Y., Takanari, J., Goto, K., Ueda, H., Tanaka, A., & Nishihira, J. (2019). Effect of welsh onion (Allium fistulosum L.) green leaf extract on immune response in healthy subjects: A randomized, double-blind, placebo-controlled study. Functional Foods in Health and Disease, 9(2), 123–133. https://doi.org/10.31989/ffhd.v9i2.569

Jippo, T., Kobayashi, Y., Kitada, K., & Kitsuda, K. (2022). Anti-allergic activity of an ethanol extract of bunching onion (Allium fistulosum), a traditional vegetable from Osaka. Functional Foods in Health and Disease, 12(3), 128–133. https://doi.org/10.31989/ffhd.v12i3.900

Kim, H. M., Park, M. K., Mun, S. J., Jung, M. Y., Lee, S. M., & Kim, Y. S. (2022). Study on volatile profiles, polycyclic aromatic hydrocarbons, and acrylamide formed in welsh onion (Allium fistulosum L.) fried in vegetable oils at different temperatures. Foods, 11(1335), 1–11. https://doi.org/10.3390/foods11091335

Kołota, E., Adamczewska-Sowińska, K., & Uklańska-Pusz, C. (2012). Yield and nutritional value of japanese bunching onion (Allium fitulosum L.) depending on the growing season and plant maturation stage. Journal of Elementology, 17(4), 587–596. https://doi.org/10.5601/jelem.2012.17.4.03

Kopsell, D. A., Sams, C. E., Deyton, D. E., Abney, K. R., Kopsell, D. E., & Robertson, L. (2010). Characterization of nutritionally important carotenoids in bunching onion. HortScience, 45(3), 463–465. https://doi.org/10.21273/hortsci.45.3.463

Krestini, E. H., Korlina, E., Azmi, C., Saadah, I. R., & Surono, S. (2023). Kajian sinergisme antara Dark Septate Endophyte (DSE) dengan fungisida terhadap pertumbuhan, perkembangan penyakit dan hasil tanaman bawang merah. Seminar Nasional Perhimpunan Ilmu Pemuliaan Indonesia (PERIPI Komisariat Daerah Jawa Barat 2023, 109–117.

Kudryavtseva, N., Havey, M. J., Black, L., Hanson, P., Sokolov, P., Odintsov, S., … Khrustaleva, L. (2019). Cytological evaluations of advanced generations of interspecific hybrids between Allium cepa and Allium fistulosum showing resistance to Stemphylium vesicarium. Genes, 10(195), 1–11. https://doi.org/10.3390/genes10030195

Lai, W., Yang, Y. B., Li, X., Sun, L. N., Wu, Z. J., & Chen, W. S. (2012). New steroidal sapogenins from the acid hydrolysis product of the whole glycoside mixture of welsh onion seeds. Chinese Chemical Letters, 23, 193–196. https://doi.org/10.1016/j.cclet.2011.11.014

Lee, J. B., Miyake, S., Umetsu, R., Hayashi, K., Chijimatsu, T., & Hayashi, T. (2012). Anti-influenza A virus effects of fructan from welsh onion (Allium fistulosum L.). Food Chemistry, 134(4), 2164–2168. https://doi.org/10.1016/j.foodchem.2012.04.016

Liu, Q., Wen, C., Zhao, H., & Wang, Y. (2019). Comparative analysis of male sterility associated ATPase isoenzymes and atpA genes in a welsh onion (Allium fistulosum L.) cytoplasmic male sterility line and its maintainer line. Scientia Horticulturae, 243(May 2018), 101–106. https://doi.org/10.1016/j.scienta.2018.08.020

Major, N., Perković, J., Palčić, I., Bažon, I., Horvat, I., Ban, D., & Ban, S. G. (2022). The phytochemical and nutritional composition of shallot species (Allium × cornutum, Allium × proliferum and A. cepa Aggregatum) is genetically and environmentally dependent. Antioxidants, 11(1547), 1–24. https://doi.org/10.3390/antiox11081547

Masuzaki, S., Yaguchi, S., Yamauchi, N., & Shigyo, M. (2007). Morphological characterisation of multiple alien addition lines of Allium reveals the chromosomal locations of gene(S) related to bulb formation in Allium cepa L. Journal of Horticultural Science and Biotechnology, 82(3), 393–396. https://doi.org/10.1080/14620316.2007.11512249

McCallum, J., Baldwin, S., Shigyo, M., Deng, Y., van Heusden, S., Pither-Joyce, M., & Kenel, F. (2012). AlliumMap-A comparative genomics resource for cultivated Allium vegetables. BMC Genomics, 13(168), 1–7. https://doi.org/10.1186/1471-2164-13-168

Melati, I., Rahayu, G., Surono, Effendi, H., & Henny, C. (2021). Decolourization of congo red synthetic dyes by dark septate endophytes. IOP Conference Series: Earth and Environmental Science, 948(012073), 1–9. https://doi.org/10.1088/1755-1315/948/1/012073

Melati, I., Rahayu, G., Surono, Effendi, H., Henny, C., & Susanti, E. (2023). Chromium (VI) bioremediation potential of dark septate endophytic (DSE) fungi. IOP Conference Series: Earth and Environmental Science, 1201(012077), 1–10. https://doi.org/10.1088/1755-1315/1201/1/012077

Melati, Irma, Rahayu, G., Surono, S., Effendi, H., Henny, C., & Yanto, D. H. Y. (2023). Biodecolorization of anthraquinone and azo dyes by dark septate endophytic fungi. Bioresource Technology Reports, 22(101427), 1–11. https://doi.org/10.1016/j.biteb.2023.101427

Moldovan, C., Frumuzachi, O., Babotă, M., Barros, L., Mocan, A., Carradori, S., & Crişan, G. (2022). Therapeutic uses and pharmacological properties of shallot (Allium ascalonicum): A systematic review. Frontiers in Nutrition, 9(July), 1–34. https://doi.org/10.3389/fnut.2022.903686

Ndruru, C. C., & Herawati, M. M. (2021). Pengaruh konsentrasi minyak nabati terhadap lama Simpan dan kualitas pasta bawang merah (Allium ascalonicum L.). Biota : Jurnal Ilmiah Ilmu-Ilmu Hayati, 6(1), 8–14. https://doi.org/10.24002/biota.v6i1.2929

Nohara, T., Fujiwara, Y., El-Aasr, M., Ikeda, T., Ono, M., Nakano, D., & Kinjo, J. (2017). Antitumor Allium sulfides. Chemical and Pharmaceutical Bulletin, 65(3), 209–217. https://doi.org/10.1248/cpb.c16-00844

Nohara, T., Fujiwara, Y., El-Aasr, M., Ikeda, T., Ono, M., Nakano, D., & Kinjo, J. (2021). Thiolane-type sulfides from garlic, onion, and welsh onion. Journal of Natural Medicines, 75(4), 741–751. https://doi.org/10.1007/s11418-021-01533-x

Nohara, T., Fujiwara, Y., Ikeda, T., Murakami, K., Ono, M., El-Aasr, M., … Kinjo, J. (2016). Two new bicyclic sulfoxides from welsh onion. Journal of Natural Medicines, 70(2), 260–265. https://doi.org/10.1007/s11418-015-0947-z

Nohara, T., Fujiwara, Y., Kudo, R., Yamaguchi, K., Ikeda, T., Murakami, K., … Takeya, M. (2014). Isolation and characterization of new onionins A2 and A3 from Allium cepa, and of onionins A1, A2, and A3 from Allium fistulosum. Chemical and Pharmaceutical Bulletin, 62(11), 1141–1145. https://doi.org/10.1248/cpb.c14-00461

Ohara, T., Tsukazaki, H., Song, Y. S., Wako, T., Yamashita, K. I., & Kojima, A. (2009). Mapping of quantitative trait loci controlling seedling growth in bunching onion (Allium fistulosum L.). Journal of the Japanese Society for Horticultural Science, 78(4), 436–442. https://doi.org/10.2503/jjshs1.78.436

Răut, I., Călin, M., Capră, L., Gurban, A.-M., Doni, M., Radu, N., & Jecu, L. (2021). Cladosporium sp. isolate as fungal plant growth promoting agent. Agronomy, 11(392), 1–17. https://doi.org/10.3390/agronomy11020392

Robati, R. (2013). Bio-ethanol production from green onion by yeast in repeated batch. Indian Journal of Microbiology, 53(3), 329–331. https://doi.org/10.1007/s12088-013-0374-3

Saadah, I. R., Pinilih, J., Faoji, N., Azmi, C., & Soedomo, P. (2023). Performances of 34 shallot accessions in Lembang highland. IOP Conf. Ser. Earth Environ. Sci., 1–8. https://doi.org/10.1088/1755-1315/1241/1/012028

Safwan Alikasturi, A., Izzuddin Mokhtar, M., Asyraf Zainuddin, M., Empina Serit, M., & Syafiiqah Abdul Rahim, N. (2020). Phytoremediation of lead in Mineral, distilled and surface water using Pennisetum purpureum and Allium fistulosum. Materials Today: Proceedings, 31(2020), A175–A179. https://doi.org/10.1016/j.matpr.2021.02.434

Saputri, M., & Jonni, J. (2020). Penggunaan fermentasi urin kuda dan pupuk kandang kuda untuk mengoptimalkan produksi tanaman bawang daun (Allium fistulosum L.). Jurnal Hortuscoler, 1(1), 14–19. https://doi.org/10.32530/jh.v1i01.68

Scholten, O. E., van Kaauwen, M. P. W., Shahin, A., Hendrickx, P. M., Keizer, L. C. P., Burger, K., … Vosman, B. (2016). SNP-markers in Allium species to facilitate introgression breeding in onion. BMC Plant Biology, 16(1), 1–10. https://doi.org/10.1186/s12870-016-0879-0

Shigyo, M, Iino, M., Ino, H., & Tashiro, Y. (1998). Transmission rates of extra chromosomes in allien monosomic addition lines of Japanese bunching onion with extra chromosomes from shallot. J. Japan. Soc. Hort. Sci, 68(1), 18–22. Retrieved from http://www.mendeley.com/research/geology-volcanic-history-eruptive-style-yakedake-volcano-group-central-japan/%0Ahttps://www.sciencedirect.com/science/article/pii/S0038080620318011%0Ahttps://www.jstage.jst.go.jp/article/jjshs1925/72/6/72_6_525/_article/-c

Shigyo, Masayoshi, Imamura, K., Iino, M., Yamashita, K. I., & Tashiro, Y. (1998). Identification of alien chromosomes in a series of Allium fistulosum - A. cepa monosomic addition lines by means of genomic in situ hybridization. Genes and Genetic Systems, 73(5), 311–315. https://doi.org/10.1266/ggs.73.311

Shigyo, Masayoshi, Miyazaki, T., Isshiki, S., & Tashiro, Y. (1997). Assignment of randomly amplified polymorphic DNA markers to all chromosomes of shallot (Allium cepa L. Aggregatum group). Genes and Genetic Systems, 72(4), 249–252. https://doi.org/10.1266/ggs.72.249

Shigyo, Masayoshi, Tashiro, Y., Iino, M., Terahara, N., Ishimaru, K., & Isshiki, S. (1997). Chromosomal locations of genes related to flavonoid and anthocyanin production in leaf sheath of shallot (Allium cepa L. Aggregatum group). Genes and Genetic Systems, 72(3), 149–152. https://doi.org/10.1266/ggs.72.149

Shigyo, Masayoshi, Tashiro, Y., Isshiki, S., & Miyazaki, S. (1996). Establishment of a series of alien monosomic addition lines of Japanese bunching onion (Allium fistulosum L.) with extra chromosomes from shallot (A. cepa L. Aggregatum group). Genes Genet. Syst., 71, 363–371. https://doi.org/10.2503/jjshs.68.494

Song, C., Hong, P., Zhou, C., Chen, A., Lin, Y., Zhong, T., & Liu, L. (2023). Effect of different vegetable oils on the flavor of the fried green onion (Allium fistulosum L.) oil. Journal of Chinese Institute of Food Science and Technology, 23(4), 354–364. https://doi.org/10.16429/j.1009-7848.2023.04.033

Spagnoletti, F. N., Tobar, N. E., Fernández Di Pardo, A., Chiocchio, V. M., & Lavado, R. S. (2017). Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Applied Soil Ecology, 111, 25–32. https://doi.org/10.1016/j.apsoil.2016.11.010

Sudha, V., Govindaraj, R., Baskar, K., Al-Dhabi, N. A., & Duraipandiyan, V. (2016). Biological properties of endophytic fungi. Brazilian Archives of Biology and Technology, 59(December), 1–7. https://doi.org/10.1590/1678-4324-2016150436

Sung, Y. Y., Kim, D. S., Kim, S. H., & Kim, H. K. (2018). Aqueous and ethanolic extracts of welsh onion, Allium fistulosum, attenuate high-fat diet-induced obesity. BMC Complementary and Alternative Medicine, 18(105), 1–11. https://doi.org/10.1186/s12906-018-2152-6

Sung, Y. Y., Kim, S. H., Kim, D. S., Park, S. H., Yoo, B. W., & Kim, H. K. (2014). Nutritional composition and anti-obesity effects of cereal bar containing Allium fistulosum (welsh onion) extract. Journal of Functional Foods, 6(1), 428–437. https://doi.org/10.1016/j.jff.2013.11.009

Sung, Y. Y., Kim, S. H., Yoo, B. W., & Kim, H. K. (2015). The nutritional composition and anti-obesity effects of an herbal mixed extract containing Allium fistulosum and Viola mandshurica in high-fat-diet-induced obese mice. BMC Complementary and Alternative Medicine, 15(1), 1–9. https://doi.org/10.1186/s12906-015-0875-1

Surono, & Narisawa, K. (2017). The dark septate endophytic fungus Phialocephala fortinii is a potential decomposer of soil organic compounds and a promoter of Asparagus officinalis growth. Fungal Ecology, 28(October), 1–10. https://doi.org/10.1016/j.funeco.2017.04.001

Surono, & Narisawa, K. (2018). The inhibitory role of dark septate endophytic fungus Phialocephala fortinii against Fusarium disease on the Asparagus officinalis growth in organic source conditions. Biological Control, 121(February), 159–167. https://doi.org/10.1016/j.biocontrol.2018.02.017

Surono, & Narisawa, K. (2021). The cellulolytic activity and symbiotic potential of dark septate endophytic fungus Phialocephala fortinii to promote non-mycorrhizal plants growth. IOP Conference Series: Earth and Environmental Science, 648(1), 1–10. https://doi.org/10.1088/1755-1315/648/1/012165

Tawaraya, K., Hirose, R., & Wagatsuma, T. (2012). Inoculation of arbuscular mycorrhizal fungi can substantially reduce phosphate fertilizer application to Allium fistulosum L. and achieve marketable yield under field condition. Biology and Fertility of Soils, 48(7), 839–843. https://doi.org/10.1007/s00374-012-0669-2

Tawfeeq Al-Ani, L. K., Surono, S., Aguilar-Marcelino, L., Salazar-Vidal, V. E., Becerra, A. G., & Raza, W. (2021). Role of Useful Fungi in Agriculture Sustainability. In Recent trends in mycological research (Vol. 1, pp. 439–455). https://doi.org/10.1007/978-3-030-60659-6_19

Țigu, A. B., Moldovan, C. S., Toma, V. A., Farcaș, A. D., Moț, A. C., Jurj, A., … Pârvu, M. (2021). Phytochemical analysis and in vitro effects of Allium fistulosum L. And Allium sativum L. extracts on human normal and tumor cell lines: A comparative study. Molecules, 26(574), 1–19. https://doi.org/10.3390/molecules26030574

Tsukazaki, H., Yaguchi, S., Yamashita, K. ichiro, & Wako, T. (2017). QTL analysis of morphological traits and pseudostem pigmentation in bunching onion (Allium fistulosum). Euphytica, 213(7), 1–10. https://doi.org/10.1007/s10681-017-1944-y

Tsukazaki, H., Yamashita, K. I., Yaguchi, S., Masuzaki, S., Fukuoka, H., Yonemaru, J., … Wako, T. (2008). Construction of SSR-based chromosome map in bunching onion (Allium fistulosum). Theoretical and Applied Genetics, 117(8), 1213–1223. https://doi.org/10.1007/s00122-008-0849-5

Ueda, H., Takeuchi, A., & Wako, T. (2013). Activation of immune responses in mice by an oral administration of bunching onion (Allium Fistulosum) mucus. Bioscience, Biotechnology and Biochemistry, 77(9), 1809–1813. https://doi.org/10.1271/bbb.130084

Van Der Meer, Q. P. (1997). Old and new crops within edible allium. Acta Horticulturae, 433, 17–31. https://doi.org/10.17660/ActaHortic.1997.433.1

Vergara, C., Araujo, K. E. C., Urquiaga, S., Santa-Catarina, C., Schultz, N., da Silva Araújo, E., … Zilli, J. (2018). Dark septate endophytic fungi increase green manure-15N recovery efficiency, N contents, and micronutrients in rice grains. Frontiers in Plant Science, 9(May), 1–11. https://doi.org/10.3389/fpls.2018.00613

Wako, T., Tsukazaki, H., Yaguchi, S., Yamashita, K. ichiro, Ito, S. ichi, & Shigyo, M. (2016). Mapping of quantitative trait loci for bolting time in bunching onion (Allium fistulosum L.). Euphytica, 209, 537–546. https://doi.org/10.1007/s10681-016-1686-2

Wako, T., Yamashita, K. I., Tsukazaki, H., Ohara, T., Kojima, A., Yaguchi, S., … Shigyo, M. (2015). Screening and incorporation of rust resistance from Allium cepa into bunching onion (Allium fistulosum) via alien chromosome addition. Genome, 58(4), 135–142. https://doi.org/10.1139/gen-2015-0026

Waluyo, N., Pinilih, J., Sulastrini, I., & Edisaputra, E. K. (2021). Pertumbuhan dan produksi benih 14 varietas bawang merah (Allium cepa L. Var Aggregatum) di dataran tinggi Lembang, Kabupaten Bandung Barat. AGROPROSS, 265–274. https://doi.org/10.25047/agropross.2021.229

Wang, J., Qiao, L., Liu, B., Wang, J., Wang, R., Zhang, N., … Yu, Y. (2023). Characteristic aroma-active components of fried green onion (Allium fistulosum L.) through flavoromics analysis. Food Chemistry, 429(136909), 1–10. https://doi.org/10.1016/j.foodchem.2023.136909

Wang, B. Sen, Huang, G. J., Lu, Y. H., & Chang, L. W. (2013). Anti-inflammatory effects of an aqueous extract of welsh onion green leaves in mice. Food Chemistry, 138, 751–756. https://doi.org/10.1016/j.foodchem.2012.11.106

Xing, J., Zhu, M., Wang, Y., & Liu, H. (2023). The complete mitochondrial genome of Allium fistulosum L. (Amaryllidaceae). Mitochondrial DNA Part B: Resources, 8(8), 890–894. https://doi.org/10.1080/23802359.2023.2248684

Yaguchi, S., Hang, T. T. M., Tsukazaki, H., Vu, Q. H., Masuzaki, S. I., Wako, T., … Shigyo, M. (2009). Molecular and biochemical identification of alien chromosome additions in shallot (Allium cepa L. Aggregatum group) carrying extra chromosome(s) of bunching onion (A. fistulosum L.). Genes and Genetic Systems, 84(1), 43–55. https://doi.org/10.1266/ggs.84.43

Yaguchi, S., Yamauchi, N., & Shigyo, M. (2009). Single alien chromosome additions from shallot (Allium cepa L. Aggregatum group) increase endogenous polyphenol contents in japanese bunching onion. Journal of the Japanese Society for Horticultural Science, 78(4), 431–435. https://doi.org/10.2503/jjshs1.78.431

Yamashita, K. I., Tsukazaki, H., Kojima, A., Ohara, T., & Wako, T. (2010). Inheritance mode of male sterility in bunching onion (Allium fistulosum L.) accessions. Euphytica, 173(3), 357–367. https://doi.org/10.1007/s10681-009-0101-7

Yuliani, D., Soekarno, B. P. W., Munif, A., & Surono, S. (2020). Antagonism potency of dark septate endophytes against Pyricularia oryzae for improving health of rice plants. Jurnal Agro, 7(2), 134–147. https://doi.org/10.15575/9589

Yuliani, D., W, B. P., Soekarno, S., Munif, A., & Surono, S. (2020). Antagonism potency of dark Septate endophytes against Pyricularia oryzae for improving health of rice plants. Jurnal Agro, 7(2), 134–147. https://doi.org/10.15575/9589

Yuniarti, E., Surono, Nurjaya, & Susilowati, D. N. (2021). The potential of plant growth-promoting microbes from South Kalimantan acid sulfate soil in enhancing the growth of rice plants. IOP Conference Series: Earth and Environmental Science, 648(012052), 1–8. https://doi.org/10.1088/1755-1315/648/1/012052

Zaffan, Z. R., Soekarno, B. P. W., Munif, A., & Surono, S. (2019). Potential of Indonesia’s indifenous Dark Septate Endophytic fungi to control Fusarium wilt in vitro. SEAMEO BIOTROP Third International Conference on Tropical Biology, (October), 143–148.

Zhang, N., Sun, B., Mao, X., Chen, H., & Zhang, Y. (2019). Flavor formation in frying process of green onion (Allium fistulosum L.) deep-fried oil. Food Research International, 121(October 2018), 296–306. https://doi.org/10.1016/j.foodres.2019.03.006

Zolfaghari, B., Yazdiniapour, Z., Sadeghi, M., Akbari, M., Troiano, R., & Lanzotti, V. (2020). Cinnamic acid derivatives from welsh onion (Allium fistulosum) and their antibacterial and cytotoxic activities. Phytochemical Analysis, 1–7. https://doi.org/10.1002/pca.2924

Zolfaghari, B., Yazdiniapour, Z., Sadeghi, M., Troiano, R., & Lanzotti, V. (2016). Furostanol saponins from the bulbs of welsh onion, Allium fistulosum L. Planta Medica, 82(18), 1584–1590. https://doi.org/10.1055/s-0042-120122

Number of pseudo-stem of crossed shallot plants treated with control, Dendrothyrium sp. strain CPP 1.1.44, Curvularia sp. strain TKC 22, and Cladosporium sp. strain KSP.1

Diterbitkan

2024-06-29

Cara Mengutip

Azmi, C. ., Saadah, I. R. ., Pinilih, J. ., Faoji, N. ., Ahmadi, N. R. ., Surono, S., Karjadi, A. K. ., & Soedomo, P. . (2024). Performa fase vegetatif bawang merah persilangan (Allium fistulosum L. x Allium cepa L. var. aggregatum) dengan aplikasi dark septate endophyte. Buitenzorg: Journal of Tropical Science, 1(1), 1–9. https://doi.org/10.70158/buitenzorg.v1i1.5