Modulating flowering for breeding efficiency and biomass optimization: A molecular and biotechnological review

Authors

  • Aqwin Polosoro Research Center for Genetic Engineering, National Research and Innovation Agency

DOI:

https://doi.org/10.70158/buitenzorg.v2i1.18

Abstract

Regulation of flowering time is a critical determinant of plant reproductive success and a key trait for optimizing crop adaptation, yield stability, and breeding efficiency. This review highlights recent advances in the molecular pathways controlling flowering, including photoperiod sensing, vernalization and temperature response, autonomous and hormonal regulation, and floral integrator networks. Key genes such as FT, SOC1, FLC, TFL1, and Ghd7 serve as central nodes within these interconnected pathways. The application of genetic engineering tools—including gene overexpression, CRISPR/Cas-mediated knockouts, promoter editing, and transient expression systems—has enabled precise manipulation of flowering phenology across a wide range of crops. These strategies have accelerated fast-track breeding in temperate and tropical perennials and facilitated the enhancement of vegetative biomass in forage and industrial crops through delayed flowering. However, the deployment of flowering-modified genotypes presents challenges, including environmental interactions, phenological trade-offs, biosafety regulation, and potential ecological impacts. Future directions should emphasize the integration of flowering time control with speed breeding platforms, genomic selection, and climate-adaptive trait design, tailored to species—and region—specific requirements. Such multidisciplinary approaches will be vital to advancing crop resilience, productivity, and sustainability under changing environmental conditions.

 

Keywords: flowering time regulation, genetic engineering, FT gene, fast-track breeding, biomass optimization

Downloads

Download data is not yet available.

Author Biography

Aqwin Polosoro, Research Center for Genetic Engineering, National Research and Innovation Agency

 

 

 

References

Ahmar, S., Zhai, Y., Huibin, H., Yu, K., Khan, M. H. U., Shahid, M., Samad, R. A., Khan, S. U., Amoo, O., Fan, C., & Zhou, Y. (2021). Development of mutants with varying flowering times by targeted editing of multiple SVP gene copies in Brassica napus L. Crop Journal, 10(1), 67–74. https://doi.org/10.1016/j.cj.2021.03.023

Amasino, R. (2010). Seasonal and developmental timing of flowering. Plant Journal, 61(6), 1001–1013. https://doi.org/10.1111/j.1365313X.2010.04148.x

Asp, T., Byrne, S., Gundlach, H., Bruggmann, R., Mayer, K. F. X., Andersen, J. R., Xu, M., Greve, M., Lenk, I., & Lübberstedt, T. (2011). Comparative sequence analysis of VRN1 alleles of Lolium perenne with the co-linear regions in barley, wheat, and rice. Molecular Genetics and Genomics, 286(5–6), 433–447. https://doi.org/10.1007/s00438-011-0654-8

Bellec, Y., Guyon-Debast, A., François, T., Gissot, L., Biot, E., Nogué, F., Faure, J. D., & Tepfer, M. (2022). New flowering and architecture traits mediated by multiplex CRISPR-Cas9 gene editing in hexaploid Camelina sativa. Agronomy, 12(8), 1873. https://doi.org/10.3390/agronomy12081873

Boss, P. K., Bastow, R. M., Mylne, J. S., & Dean, C. (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. The Plant Cell, 16(suppl_1), S18–S31. https://doi.org/10.1105/tpc.015958

Castaings, L., Bergonzi, S., Albani, M. C., Kemi, U., Savolainen, O., & Coupland, G. (2014). Evolutionary conservation of cold-induced antisense RNAs of FLOWERING LOCUS C in Arabidopsis thaliana perennial relatives. Nature Communications, 5, 1–9. https://doi.org/10.1038/ncomms5457

Chen, K., Wang, Y., Zhang, R., Zhang, H., & Gao, C. (2019). CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70, 667–697. https://doi.org/10.1146/annurev-arplant-050718-100049

Deng, Q., Wang, Y., Feng, J., Wei, D., Wang, Z. X., & Tang, Q. (2024). Brassica juncea BjuWRKY71-1 accelerates flowering by regulating the expression of SOC1. Sheng Wu Gong Cheng Xue Bao, 40(4), 1017–1028. https://doi.org/10.13345/j.cjb.230400

Deng, W., Ying, H., Helliwell, C. A., Taylor, J. M., Peacock, W. J., & Dennis, E. S. (2011). FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 108(16), 6680–6685. https://doi.org/10.1073/ pnas.1103175108

Deva, C., Dixon, L., Urban, M., Ramirez‐Villegas, J., Droutsas, I., & Challinor, A. (2023). A new framework for predicting and understanding flowering time for crop breeding. Plants, People, Planet, 6(1), 197–209. https://doi.org/10.1002/ppp3.10427

Endo, T., Fujii, H., Omura, M., & Shimada, T. (2020). Fast-track breeding system to introduce CTV resistance of trifoliate orange into citrus germplasm, by integrating early flowering transgenic plants with marker-assisted selection. BMC Plant Biology, 20(1), 1–16. https://doi.org/10.1186/s12870-020-02399-z

Flachowsky, H., Roux, P. M. Le, Peil, A., Patocchi, A., Richter, K., & Hanke, M. V. (2011). Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytologist, 192(2), 364–377. https://doi.org/10.1111/j.1469-8137.2011.03813.x

Fornara, F., de Montaigu, A., & Coupland, G. (2010). SnapShot: control of flowering in Arabidopsis. Cell, 141(3), 3–5. https://doi.org/10.1016/j.cell.2010.04.024

Gaurha, A., Dewangan, R. K., Minz, V., Shukla, S., Shrivastava, P., & Yamini, Y. (2024). A comprehensive review on fast track breeding of fruit crops: a new approach. Plant Archives, 24(1), 929–937. https://doi.org/10.51470/plantarchives.2024.v24.no.1.127

Ghosh, S., Roy, A., & Dutta, S. (2024). Rapid generation advance methods to fast-track crop breeding: a review. Agricultural Reviews, 45 (4), 693–698. https://doi.org/10.18805/ag.r-2476

Greb, T., Mylne, J. S., Crevillen, P., Geraldo, N., An, H., Gendall, A. R., & Dean, C. (2007). The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC. Current Biology, 17(1), 73–78. https://doi.org/10.1016/j.cub.2006.11.052

Hanano, S., & Goto, K. (2011). Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. The Plant Cell, 23(9), 3172–3184. https://doi. org/10.1105/tpc.111.088641

Hodaei, A., & Werbrouck, S. (2023). Unlocking nature’s clock: CRISPR technology in flowering time engineering. Plants, 12(23), 4020. https://doi.org/10.3390/plants12234020

Hu, Y., Li, S., & Xing, Y. (2019). Lessons from natural variations: artificially induced heading date variations for improvement of regional adaptation in rice. Theoretical and Applied Genetics, 132(2), 383–394. https://doi.org/10.1007/s00122-018-3225-0

Ionescu, I. A., Møller, B. L., & Sánchez-Pérez, R. (2016). Chemical control of flowering time. Journal of Experimental Botany, 67(1), 27–40. https://doi.org/10.1093/jxb/erw427

Jeong, S. Y., Ahn, H., Ryu, J., Oh, Y., Sivanandhan, G., Won, K. H., Park, Y. D., Kim, J. S., Kim, H., Lim, Y. P., & Kim, S. G. (2019). Generation of early-flowering Chinese cabbage (Brassica rapa spp. pekinensis) through CRISPR/Cas9-mediated genome editing. Plant Biotechnology Reports, 13(5), 491–499. https://doi.org/10.1007/S11816-019-00566-9

Kim, D. H. (2020). Current understanding of flowering pathways in plants: focusing on the vernalization pathway in Arabidopsis and several vegetable crop plants. Horticulture Environment and Biotechnology, 61(2), 209–227. https://doi.org/ 10.1007/s13580-019-00218-5

Komiya, R., Ikegami, A., Tamaki, S., Yokoi, S., & Shimamoto, K. (2008). Hd3a and RFT1 are essential for flowering in rice. Development, 135(4), 767–774. https://doi.org/10.1242/DEV.008631

Kotoda, N., Hayashi, H., Suzuki, M., Igarashi, M., Hatsuyama, Y., Kidou, S. I., Igasaki, T., Nishiguchi, M., Yano, K., Shimizu, T., Takahashi, S., Iwanami, H., Moriya, S., & Abe, K. (2010). Molecular characterization of FLOWERING LOCUS T-Like genes of apple (Malus × domestica Borkh.). Plant and Cell Physiology, 51(4), 561–575. https://doi.org/10.1093/pcp/pcq021

Leijten, W., Koes, R., Roobeek, I., & Frugis, G. (2018). Translating flowering time from Arabidopsis thaliana to Brassicaceae and Asteraceae crop species. Plants, 7(4), 111. https://doi.org/10.3390/PLANTS7040111

Li, X., Shen, C., Chen, R., Sun, B., Li, D., Guo, X., Wu, C., Khan, N., Chen, B., & Yuan, J. (2023). Function of BrSOC1b gene in flowering regulation of Chinese cabbage and its protein interaction. Planta, 258(1), 21. https://doi.org/10.1007/s00425-023-04173-5

Liu, S., Liu, S., Qi, T., Ma, J., Ma, T., Ma, L., & Lin, X. (2016). Ectopic expression of a SOC1 homolog from Phyllostachys violascens alters flowering time and identity of floral organs in Arabidopsis thaliana. Trees-Structure and Function, 30(6), 2203–2215. https://doi.org/10.1007/S00468-016-1445-Y

Mallik, M. (2018). Flowering control mechanisms in plants and its importance in crop production and breeding. International Journal of Pure & Applied Bioscience, 6(1), 1033–1038. https://doi.org/10.18782/2320-7051.2796

Nakashima, N., & Miyazaki, K. (2014). Bacterial cellular engineering by genome editing and gene silencing. International Journal of Molecular Sciences, 15(2), 2773–2793. https://doi.org/10.3390/ijms15022773

Odipio, J., Getu, B., Chauhan, R. D., Alicai, T., Bart, R., Nusinow, D. A., & Taylor, N. J. (2020). Transgenic overexpression of endogenous FLOWERING LOCUS T-like gene MeFT1 produces early flowering in cassava. PLoS ONE, 15(3), e0231232. https://doi.org/10.1371/journal.pone.0231232

Reed, J. W., Nagatani, A., Elich, T. D., Fagan, M., & Chory, J. (1994). Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiology, 104(4), 1139–1149. https://doi.org/10.1104/pp.104.4.1139

Sasani, S., Hemming, M. N., Oliver, S. N., Greenup, A., Tavakkol-Afshari, R., Mahfoozi, S., Poustini, K., Sharifi, H. R., Dennis, E. S., Peacock, W. J., & Trevaskis, B. (2009). The influence of vernalization and daylength on expression of flowering-time genes in the shoot apex and leaves of barley (Hordeum vulgare). Journal of Experimental Botany, 60(7), 2169–2178. https://doi.org/10.1093/jxb/erp098

Schiessl, S. (2020). Regulation and subfunctionalization of flowering time genes in the allotetraploid oil crop Brassica napus. Frontiers in Plant Science, 11, 605155. https://doi.org/10.3389/FPLS.2020.605155

Shang, L., Tao, J., Song, J., Wang, Y., Zhang, X., Ge, P., Li, F., Dong, H., Gai, W., Grierson, D., Ye, Z., & Zhang, Y. (2023). CRISPR/Cas9-mediated mutations of FANTASTIC FOUR gene family for creating early flowering mutants in tomato. Plant Biotechnology Journal, 22(3), 774–784. https://doi.org/10.1111/pbi.14223

Shannon, S., & Meeks-Wagner, D. R. (1991). A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell, 3(9), 877–892. https://doi.org/10.2307/3869152

Sheldon, C. C., Rouse, D. T., Finnegan, E. J., Peacock, W. J., & Dennis, E. S. (2000). The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proceedings of the National Academy of Sciences of the United States of America, 97(6), 3753–3758. https://doi.org/10.1073/pnas.97.7.3753

Soyk, S., Müller, N. A., Park, S. J., Schmalenbach, I., Jiang, K., Hayama, R., Zhang, L., Van Eck, J., Jiménez-Gómez, J. M., Jiménez-Gómez, J. M., & Lippman, Z. B. (2017). Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nature Genetics, 49(1), 162–168. https://doi.org/10.1038/NG.3733

Tao, Z., Shen, L., Liu, C., Liu, L., Yan, Y., & Yu, H. (2012). Genome‐wide identification of SOC1 and SVP targets during the floral transition in Arabidopsis. The Plant Journal, 70(4), 549–561. https://doi.org/10.1111/j.1365-313x.2012.04919.x

Teklemariam, S. S., Bayissa, K. N., Matros, A., Pillen, K., Ordon, F., & Wehner, G. (2024). Genetic analysis of flowering time of Ethiopian barley accessions under field and climate chamber conditions. Agronomy, 14(12), 3031. https://doi.org/10.3390/agronomy14123031

Tränkner, C., Lehmann, S., Hoenicka, H., Fladung, M., Lenhardt, D., Dunemann, F., Gau, A., Schlangen, K., Malnoy, M., & Flachowsky, H. (2010). Over-expression of an FT-homologous gene of apple induces early flowering in annual and perennial plants. Planta, 232(6), 1309–1324. https://doi.org/10.1007/s00425-010-1254-2

Turck, F., Fornara, F., & Coupland, G. (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annual Review of Plant Biology, 59, 573–594. https://doi.org/10.1146/annurev.arplant.59.032607.092755

Wang, F., Li, S., Kong, F., Lin, X., & Lu, S. (2023). Altered regulation of flowering expands growth ranges and maximizes yields in major crops. Frontiers in Plant Science, 14, 1094411. https://doi.org/10.3389/fpls.2023.1094411

Wang, G., Wang, C., Lu, G., Wang, W., Mao, G., Habben, J. E., Song, C., Wang, J., Chen, J., Gao, Y., Liu, J., & Greene, T. W. (2020). Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations. Plant Molecular Biology, 104(1–2), 137–150. https://doi.org/10.1007/s11103-020-01031-w

Watson, A., Ghosh, S., Williams, M. J., Cuddy, W. S., Simmonds, J., Rey, M. D., Md Hatta, M. A., Hinchliffe, A., Steed, A., Reynolds, D., et al. (2017). Speed breeding: a powerful tool to accelerate crop research and breeding. Nature Plants, 4(1), 23–29. https://doi.org/10.1101/161182

Weng, X., Wang, L., Wang, J., Hu, Y., Du, H., Xu, C., Xing, Y., Li, X., Xiao, J., & Zhang, Q. (2014). Grain number, plant height, and Heading Date7 is a central regulator of growth, development, and stress response. Plant Physiology, 164(2), 735–747. https://doi.org/10.1104/pp.113.231308

Wenzel, S., Flachowsky, H., & Hanke, M.-V. (2013). The Fast-track breeding approach can be improved by heat-induced expression of the FLOWERING LOCUS T genes from poplar (Populus trichocarpa) in apple (Malus × domestica Borkh.). Plant Cell, Tissue and Organ Culture, 115(2), 127–137. https://doi.org/10.1007/s11240-013-0346-7

Xu, F., Rong, X., Huang, X., & Cheng, S. (2012). Recent advances of Flowering Locus T gene in higher plants. International Journal of Molecular Sciences, 13(3), 3773–3781. https://doi.org/10.3390/ijms13033773

Yamagishi, N., Sasaki, S., Yamagata, K., Komori, S., Nagase, M., Wada, M., Yamamoto, T., & Yoshikawa, N. (2011). Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the apple latent spherical virus vector. Plant Molecular Biology, 75(1), 193–204. https://doi.org/10.1007/s11103-010-9718-0

Zhang, B., Wang, L., Zeng, L., Zhang, C., & Ma, H. (2015). Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes and Development, 29(9), 975–987. https://doi.org/10.1101/gad.251520.114

Zhao, J., Huang, X., Ouyang, X., Chen, W., Du, A., Zhu, L., Wang, S., Deng, X. W., & Li, S. (2012). OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING 3, regulates rice circadian rhythm and photoperiodic flowering. PLoS ONE, 7(8), e43705. https://doi.org/10.1371/journal.pone.0043705

Zhao, Z., Yu, Y., Meyer, D., Wu, C., & Shen, W. H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nature Cell Biology, 7(12), 1156–1160. https://doi.org/10.1038/ncb1329

Zhou, S., Zhu, S., Cui, S., Hou, H., Wu, H., Hao, B., Cai, L., Xu, Z., Liu, L., Jiang, L., Wang, H., & Wan, J. (2021). Transcriptional and post‐transcriptional regulation of heading date in rice. New Phytologist, 230(3), 943–956). https://doi.org/10.1111/nph.17158

Zhu, C., Zheng, X., Huang, Y., Ye, J., Chen, P., Zhang, C., Zhao, F., Xie, Z., Zhang, S., Wang, N., Li, H., Wang, L., Tang, X., Chai, L., Xu, Q., & Deng, X. (2019). Genome sequencing and CRISPR/Cas9 gene editing of an early flowering mini-citrus (Fortunella hindsii). Plant Biotechnology Journal, 17(11), 2199–2210. https://doi.org/10.1111/PBI.13132

Downloads

Published

26-06-2025

How to Cite

Polosoro, A. (2025). Modulating flowering for breeding efficiency and biomass optimization: A molecular and biotechnological review. Buitenzorg: Journal of Tropical Science, 2(1), 13–26. https://doi.org/10.70158/buitenzorg.v2i1.18

Most read articles by the same author(s)